Fourier Analysis Mar 12, 3024
Review
Thm (WeyL).
Let 8 be an irrational number. Then the sequence

$$\left(\left\{n\,\delta^{2}\right\}\right)_{n=1}^{\infty}$$

is equidistributed in $[0,1]$.
Read that a sequence $(x_{n})_{n=1}^{\infty} \subset [0,1]$ is said to be
equidistributed in $[0,1]$ if
 $\lim_{N \to \infty} \frac{1}{N} # \left\{ 1 \le n \le N : \quad x_{N} \in (a,b) \right\} = b-a.$
for all $(a,b) \subset [0,1]$.
More generally, Weyl proved the following result:
Thm (Weyl's criterion) Let $(x_{n})_{n=1}^{\infty}$ be a sequence
with $x_{n} \in [0,1]$. Then $(x_{n})_{n=1}^{\infty}$ is equidistributed
in $[0,1]$ if and only if
 $\lim_{N \to \infty} \frac{N}{n=1} = 0$ for all $R \in \mathbb{Z} \setminus \{0\}$.

§ 4.4 A continuous but nowhere differentiable
function on
$$\mathbb{R}$$
.
In 1861, Riemann conjectured that
 $R(x) = \sum_{n=0}^{\infty} \frac{\sin(2^n x)}{2^n}$
is cts but nowhere differentiable on \mathbb{R} .
In 1916, Hardy proved that
 $R(x)$ is not diff if $\frac{x}{T}$ is irrational.
In 1969, Gerver proved that
 $R(x)$ is diff $\iff \frac{x}{T} = \frac{P}{g}$ where
 $\frac{P}{T} = \frac{Q}{g}$ are odd
integers
In 1872, Weierstrass constructed the first
example of cts but nowhere differentiable function:

$$f(x) = \sum_{n=0}^{\infty} b^{n} \cos(a^{n}x),$$
where $a > 1$ is an integer, $a > b < 1$
such that $ab > 1 + \frac{3\pi}{2}$.
Remark: Nowadays it is known that the conditions can be
weaken to: $a > 1$, $a < b < 1$ with $ab > 1$.
Here we proved a special version of Weierstrass'
result.
Then 1. Let $a < d < 1$. Define
 $f_{a}(x) = \sum_{n=0}^{\infty} 2^{-na} \cdot e^{i\frac{2^{n}x}{2}}, \quad x \in \mathbb{R}$.
Then f_{a} is cts but nowhere diff on \mathbb{R} .
(notice that $\hat{f}_{a}(m) \neq 0 \iff m = 2^{n}$ for some integer $n \ge 0$)

Idea: Let
$$g \in \mathbb{R}([-\pi,\pi])$$
 (i.e. g is integrable
on $[-\pi,\pi]$).
We consider the so-called delayed mean of g ,
 $\Delta_{N}(g)(x) = 2 \cdot \delta_{2N}(g)(x) - \delta_{N}(g)(x)$,
where
 $\delta_{N}(g)(x) = \sum_{n=-N}^{N} (1 - \frac{\ln i}{N}) \hat{g}_{(n)} e^{inx}$
(N-th Cesaro Mean of g)
By a direct calculation,
 $\Delta_{N}(g)(x) = 2 \cdot \delta_{2N}(g)(x) - \delta_{N}(g)(x)$
 $= 2 \cdot \sum_{|n| \leq 2N} (1 - \frac{\ln i}{2N}) \hat{g}_{(n)} e^{inx}$
 $- \sum_{|n| \leq N} (1 - \frac{\ln i}{N}) \hat{g}_{(n)} e^{inx}$
 $= \sum_{n=-N}^{N} \hat{g}_{(n)} e^{inx} + 2 \sum_{N \leq |n| \leq 2N} (1 - \frac{\ln i}{2N}) \hat{g}_{(n)}$

Let us consider $\Delta_N(f_a)(x)$ • Observe that if $N = 2^m$ then $\Delta_{N}(f_{a})(x) = S_{N}(f_{a})(x)$ $= \sum_{n=1}^{m} 2^{-nd} i 2^n x$ • Moreover if $N = 2^m$ then $\Delta_{2N}(f_{\alpha})(x) - \Delta_{N}(f_{\alpha})(x)$ $= \sum_{n=1}^{m+1} 2 e^{j2^n x} - \sum_{n=1}^{m} 2 e^{j2^n x}$ $= 2^{-(m+1)d} e^{i 2 x}$

Prop 3. Let
$$g \in \mathbb{R}(E^{T}, \pi^{T})$$
. Suppose g is
differentiable at x_{0} . Then
 $\left| \mathcal{O}_{N}(g)'(x_{0}) \right| \leq C \cdot \log N$,
where C is a constant.
We first use Prop 3 to prove Thm 1
Proof of Thm 1: Suppose on the contrary that
 f_{a} is diff at one point x_{0} .
Then
 $\Delta_{N}(f_{a})'(x_{0}) = 2 \mathcal{O}_{2N}(f_{d})'(x_{0}) - \mathcal{O}_{N}(f_{a})'(x_{0})$
 $\left| \Delta_{N}(f_{a})'(x_{0}) \right| \leq 2 \left| \mathcal{O}_{2N}(f_{a})'(x_{0}) \right| + \left| \mathcal{O}_{N}(f_{a})'(x_{0}) \right|$
 $\leq 2 \cdot C \cdot \log(2N) + C \cdot \log N$
 $\leq \widehat{C} \log N$.

Taking
$$N = 2^{m}$$
,
 $\Delta_{2N}(f_{A})_{k} - \Delta_{N} f_{A}(x) = 2^{-(m+1)}_{k} i 2^{m+1}_{k}$
Thun
 $\Delta_{2N}(f_{A})'(x_{0}) - \Delta_{N} f_{A}'(x_{0}) = i 2^{(m+1)}(i-d)$, $i 2^{m+1}_{k}$
Hence
Hence
 $\left[\Delta_{2N}(f_{A})'(x_{0}) - \Delta_{N} f_{A}'(x_{0})\right] = 2^{(m+1)}(i-d)$ (***)
However by (*),
 $\left[\Delta_{2N}(f_{A})'(x_{0})\right] \leq \tilde{C} \cdot \log_{2}(2N) = \tilde{C} \cdot (m+1)$
 $\left[\Delta_{2N}(f_{A})'(x_{0})\right] \leq \tilde{C} \cdot \log_{2}(N) = \tilde{C} \cdot m$
Hence
 $\left[\Delta_{2N}(f_{A})'(x_{0}) - \Delta_{N} f_{A}'(x_{0})\right] \leq 2\tilde{C} m + \tilde{C}$.
It leads to a contradiction with (**).

In the end we prove
$$Prop 3$$
.
Lemma 4.
Let $F_{N}(x) = \sum_{|n| \le N} (1 - \frac{|n|}{N}) e^{inx}$
 $= \frac{\sin^{2}(\frac{N}{2}x)}{N \sin(\frac{x}{2})^{2}}$.
Then $\exists a \text{ constant } A > 0$ such that
 $|F_{N}'(x)| \le A N^{2}, |F_{N}'(x)| \le \frac{A}{x^{2}}$ (***)
for all $x \in [-\pi, \pi]$.
Proof.
 $F_{N}(x) = \sum_{n=-N}^{N} (1 - \frac{|n|}{N}) e^{inx}$
 $F_{N}(x) = \sum_{n=-N}^{N} (1 - \frac{|n|}{N}) in e^{inx}$
 $F_{N}(x) = \sum_{n=-N}^{N} (1 - \frac{|n|}{N}) in e^{inx}$
Hence $|F_{N}'(x)| \le \sum_{n=-N}^{N} (1 - \frac{|n|}{N}) |m|$
 $\le (2N+1) N \le 4 N^{2}$.

To see the other upper bound, notice

$$F_{N}(x) = \frac{\sin^{2}(\frac{N}{2}x)}{N\sin^{2}(\frac{X}{2})}.$$
So

$$F_{N}(x) = \frac{\sin(\frac{N}{2}x)\cos(\frac{N}{2}x)}{\sin^{2}(\frac{X}{2})} - \frac{\sin^{2}(\frac{N}{2}x) \cdot \cos(\frac{X}{2})}{N\sin^{3}(\frac{X}{2})}.$$
Hence

$$\left[F_{N}(x)\right] \leq \frac{1}{\sin^{2}(\frac{X}{2})} + \frac{|\sin(\frac{N}{2}x)| \cdot |\sin(\frac{N}{2}x)|[\cos(\frac{X}{2})]}{N|[\sin^{3}(\frac{X}{2})]}$$

$$\leq \frac{1}{\sin^{2}(\frac{X}{2})} + \frac{|\frac{N}{2}x|}{N|[\sin^{3}(\frac{X}{2})]} \quad (using |[\sin a|])$$

$$\leq A \cdot \frac{1}{X^{2}} \quad (using - \frac{|[\sin a|]}{|a|]} \geq \text{ const } > 0$$
on $[-\frac{1}{2}, \frac{1}{2}]$

Prop 3. Let
$$g \in \mathbb{R}(E^{\pi}, \pi^{\pi})$$
. Suppose g is
differentiable at x_0 . Then
 $|\sigma_N(g)'(x_0)| \leq C \cdot \log N$,
where C is a constant.
Pf. Notice that
 $\sigma_N(g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(g) F_N(x-g) dg$.
Taking derivative at x_0 gives
 $\sigma_N(g)'(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(g) \cdot F_N'(x_0-g) dg$
 $(because F_N)^{is}$
 $simeth)$
 $= \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x_0-g) F_N'(g) dg$.
Notice that $\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N'(g) dg = 0$ (since F_N is
 $2\pi Periodic$).
As a consequence
 $\sigma_N(g)'(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (g(x_0-g) - g(x_0)) - F_N'(g) dg$

 $\int |y| |F_{N}'(y)| dy \leq \int |y| \cdot \frac{A}{|y|^{2}} dy$ $\int_{N}^{L} \langle |y| < \pi$ $= \int \frac{A}{|y|} dy$ $\frac{1}{N} < |y| < \pi$ $= 2 A \cdot \log |y| | \frac{\pi}{\pi}$ $= 2 A \left(\log N + \log \pi \right)$ Hence $\int_{-\pi}^{\pi} |9| [F'_{N}(5)] dy \leq \widehat{A} (|0_{\mathcal{S}}N).$ $|\mathcal{O}_{N}(g)'(x_{\circ})| \leq \widehat{A} \log N.$ 50