Fourier Analysis

Review
Tho (WeyL).
Let γ be an irrational number. Then the sequence

$$
(\{n \gamma\})_{n=1}^{\infty}
$$

is equidistributed in $[0,1)$.
Recall that a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset[0,1)$ is said to be equidistributed in $[0,1)$ if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leqslant n \leqslant N: \quad x_{n} \in(a, b)\right\}=b-a
$$

for all $(a, b) \in[0,1)$.

More generally, Weyl proved the following result:
Thu (Weyl's criterion) Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence with $x_{n} \in[0,1)$. Then $\left(x_{n}\right)_{n=1}^{\infty}$ is equidistributed in $[0,1)$ if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \cdot x_{n}}=0 \text { for all } k \in \not \subset \backslash\{0\} \text {. }
$$

§4.4 A continuous but nowhere differentiable function on \mathbb{R}.

In 1861, Riemann conjectured that

$$
R(x)=\sum_{n=0}^{\infty} \frac{\sin \left(2^{n} x\right)}{2^{n}}
$$

is cts but nowhere differentiable on \mathbb{R}.

In 1916, Hardy proved that
$R(x)$ is not diff if $\frac{x}{\pi}$ is irrational.

In 1969, Gerver proved that
$R(x)$ is diff $\Leftrightarrow \frac{x}{\pi}=\frac{p}{q}$ where P, q are odd integers

In 1872, Weierstrass constructed the first example of cts but nowhere differentiable function:

$$
f(x)=\sum_{n=0}^{\infty} b^{n} \cos \left(a^{n} x\right)
$$

where $a>1$ is an integer, $0<b<1$
such that $a b>1+\frac{3 \pi}{2}$.
Remark: Nowadays it is known that the conditions can be weaken to: $a>1,0<b<1$ with $a b>1$.

Here we proved a special version of Weierstrass' result.

The 1. Let $0<d<1$. Define

$$
f_{\alpha}(x)=\sum_{n=0}^{\infty} 2^{-n \alpha} \cdot e^{i 2^{n} x}, \quad x \in \mathbb{R} .
$$

Then f_{α} is cts but nowhere diff on \mathbb{R}.
(notice that $\hat{f_{d}}(m) \neq 0 \Leftrightarrow m=2^{n}$ for some integer $n \geqslant 0$)

Idea: Let $g \in R([-\pi, \pi])$ (i.e. g is integrable on $(-\pi, \pi J)$.
We consider the so-called delayed mean of g,

$$
\Delta_{N}(g)(x)=2 \cdot \sigma_{2 N}(g)(x)-\sigma_{N}(g)(x)
$$

where

$$
\sigma_{N}(g)(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) \hat{g}(n) e^{i n x}
$$

(N-th Cesaro Mean of g)
By a direct calculation,

$$
\begin{aligned}
& \Delta_{N}(g)(x)= 2 \sigma_{2 N}(g)(x)-\sigma_{N}(g)(x) \\
&= 2 \cdot \sum_{|n| \leqslant 2 N}\left(1-\frac{|n|}{2 N}\right) \hat{g}_{(n)} e^{i n x} \\
&-\sum_{|n| \leqslant N}\left(1-\frac{|n|}{N}\right) \hat{g}_{(n)} e^{i n x} \\
&= \sum_{n=-N}^{N} \hat{g}_{(n)} e^{i n x}+2 \sum_{N^{<}|n|<2 N}\left(1-\frac{|n|}{2 N}\right) \hat{g}_{(n)} \\
& e
\end{aligned}
$$

Let us consider $\Delta_{N}\left(f_{\alpha}\right)(x)$

- Observe that if $N=2^{m}$ then

$$
\begin{aligned}
\Delta_{N}\left(f_{\alpha}\right)(x) & =S_{N}\left(f_{\alpha}\right)(x) \\
& =\sum_{n=0}^{m} 2^{-n \alpha} e^{i 2^{n} x}
\end{aligned}
$$

- Moreover if $N=2^{m}$ then

$$
\begin{aligned}
\Delta_{2 N}\left(f_{\alpha}\right)(x) & -\Delta_{N}\left(f_{\alpha}\right)(x) \\
& =\sum_{n=0}^{m+1} 2^{-n \alpha} e^{i 2^{n} x}-\sum_{n=0}^{m} 2^{-n \alpha} e^{i 2^{n} x} \\
& =2^{-(m+1) \alpha} e^{i 2^{m+1} x}
\end{aligned}
$$

Prop 3. Let $g \in R(E \pi, \pi])$. Suppose g is differentiable at x_{0}. Then

$$
\left|\sigma_{N}(g)^{\prime}\left(x_{0}\right)\right| \leqslant C \cdot \log N
$$

where C is a constant.

We first use Prop 3 to prove Thu 1
Proof of The 1: Suppose on the contrary that f_{α} is diff at one point x_{0}.

Then

$$
\begin{align*}
\Delta_{N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right) & =2 \sigma_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)-\sigma_{N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right) \\
\left|\Delta_{N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)\right| & \leqslant 2\left|\sigma_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)\right|+\left|\sigma_{N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)\right| \\
& \leqslant 2 \cdot C \cdot \log (2 N)+c \cdot \log N \\
& \leqslant \widetilde{C} \log N
\end{align*}
$$

Taking $N=2^{m}$,

$$
\Delta_{2 N}\left(f_{\alpha}\right)(x)-\Delta_{N} f_{\alpha}(x)=2^{-(m+1) \alpha} \cdot e^{i 2^{m+1} x}
$$

Then

$$
\Delta_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)-\Delta_{N} f_{\alpha}^{\prime}\left(x_{0}\right)=i 2^{(m+1)(1-\alpha)} \cdot e^{i 2^{m+1} x}
$$

Hence

$$
\left|\Delta_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)-\Delta_{N} f_{\alpha}^{\prime}\left(x_{0}\right)\right|=2^{(m+1)(1-\alpha)}(* *)
$$

However by (*),

$$
\begin{aligned}
& \left|\Delta_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)\right| \leqslant \tilde{C} \cdot \log (2 N)=\tilde{C} \cdot(m+1) \\
& \left|\Delta_{N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)\right| \leqslant \tilde{C} \cdot \log (N)=\tilde{C} \cdot m
\end{aligned}
$$

Hence

$$
\left|\Delta_{2 N}\left(f_{\alpha}\right)^{\prime}\left(x_{0}\right)-\Delta_{N} f_{\alpha}^{\prime}\left(x_{0}\right)\right| \leqslant 2 \tilde{C} m+\tilde{C}
$$

It leads to a contradiction with $(* *)$.

In the end we prove Prop 3.

Lemma 4.

$$
\text { Let } \begin{aligned}
F_{N}(x) & =\sum_{|n| \leqslant N}\left(1-\frac{|n|}{N}\right) e^{\operatorname{in} x} \\
& =\frac{\sin ^{2}\left(\frac{N}{2} x\right)}{N \sin \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Then \exists a constant $A>0$ such that

$$
\left|F_{N}^{\prime}(x)\right| \leqslant A N^{2}, \quad\left|F_{N}^{\prime}(x)\right| \leqslant \frac{A}{x^{2}} \quad(* * *)
$$

for all $x \in[-\pi, \pi]$.

Proof.

$$
\begin{aligned}
& F_{N}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) e^{i n x} \\
& F_{N}^{\prime}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) \text { in } e^{i n x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|F_{N}^{\prime}(x)\right| & \leqslant \sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right)|n| \\
& \leqslant(2 N+1) N \leqslant 4 N^{2}
\end{aligned}
$$

To see the other upper bound, notice

$$
F_{N}(x)=\frac{\sin ^{2}\left(\frac{N}{2} x\right)}{N \sin ^{2}\left(\frac{x}{2}\right)}
$$

So

$$
F_{N}^{\prime}(x)=\frac{\sin \left(\frac{N}{2} x\right) \cos \left(\frac{N}{2} x\right)}{\sin ^{2}\left(\frac{x}{2}\right)}-\frac{\sin ^{2}\left(\frac{N}{2} x\right) \cdot \cos \left(\frac{x}{2}\right)}{N \sin ^{3}\left(\frac{x}{2}\right)}
$$

Hence

$$
\begin{aligned}
&\left|F_{N}^{\prime}(x)\right| \leqslant \frac{1}{\sin ^{2}\left(\frac{x}{2}\right)}+\frac{\left|\sin \left(\frac{N}{2} x\right)\right| \cdot\left|\sin \left(\frac{N}{2} x\right)\right|\left|\cos \left(\frac{x}{2}\right)\right|}{N\left|\sin ^{3}\left(\frac{x}{2}\right)\right|} \\
& \leqslant \frac{1}{\sin ^{2}\left(\frac{x}{2}\right)}+\frac{\left|\frac{N}{2} x\right|}{N\left|\sin ^{3}\left(\frac{x}{2}\right)\right|} \quad \begin{array}{r}
\text { using }|\sin \alpha| \\
\leqslant|\alpha|)
\end{array} \\
& \leqslant A \cdot \frac{1}{x^{2}} \quad\left(\text { using } \frac{|\sin \alpha|}{|\alpha|} \geqslant\right. \text { const>0} \\
&\text { on } \left.\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)
\end{aligned}
$$

Prop 3. Let $g \in R([\pi, \pi])$. Suppose g is differentiable at x_{0}. Then

$$
\left|\sigma_{N}(g)^{\prime}\left(x_{0}\right)\right| \leqslant c \cdot \log N,
$$

where C is a constant.

Pf. Notice that

$$
\sigma_{N}(g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(y) F_{N}(x-y) d y .
$$

Taking derivative at x_{0} gives

$$
\sigma_{N}(g)^{\prime}\left(x_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(y) \cdot F_{N}^{\prime}\left(x_{0}-y\right) d y
$$

(because F_{N} is smooth)

$$
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g\left(x_{0}-y\right) F_{N}^{\prime}(y) d y .
$$

Notice that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}^{\prime}(y) d y=0 \quad$ (since F_{N} is 2π periodic. .
As a consequence

$$
\sigma_{N}(g)^{\prime}\left(x_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(g\left(x_{0}-y\right)-g\left(x_{0}\right)\right) F_{N}^{\prime}(y) d y
$$

Then

$$
\begin{aligned}
\left|\sigma_{N}(g)^{\prime}\left(x_{0}\right)\right| & \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(x_{0}-y\right)-g\left(x_{0}\right)\right|\left|F_{N}^{\prime}(y)\right| d y \\
& \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi} C \cdot|y| \cdot\left|F_{N}^{\prime}(y)\right| d y
\end{aligned}
$$

(Since g is diff at x_{0}, so
$\frac{g\left(x_{0}-y\right)-g\left(x_{0}\right)}{y}$ is unif bold on $\left.[-\pi, \pi]\right)$

Now

$$
\begin{aligned}
& \int_{-\pi}^{\pi}|y|\left|F_{N}^{\prime}(y)\right| d y \\
& =\int_{|y|<\frac{1}{N}}+\int_{\frac{1}{N}<|y|<\pi}|y|\left|F_{N}^{\prime}(y)\right| d y
\end{aligned}
$$

But

$$
\begin{aligned}
&|y|<\frac{1}{N} \\
& y\left|\left|F_{N}^{\prime}(y)\right| d y \leqslant \int_{|y| \leqslant \frac{1}{N}} \frac{1}{N} \cdot A N^{2} \cdot d y\right. \\
&=2 A
\end{aligned}
$$

$$
\begin{aligned}
\int_{\frac{1}{N}<|y|<\pi}|y|\left|F_{N}^{\prime}(y)\right| d y & \leqslant \int_{\frac{1}{N}<|y|<\pi}|y| \cdot \cdot \frac{A}{|y|^{2}} d y \\
& =\int_{\frac{1}{N}} \frac{A}{|y|} d y \\
& =\left.2 A \cdot \log |y|\right|_{\frac{1}{N}} ^{\pi} \\
& =2 A(\log N+\log \pi)
\end{aligned}
$$

Hence

$$
\int_{-\pi}^{\pi}|y| F_{N}^{\prime}(y) \mid d y \leqslant \widetilde{A}(\log N)
$$

So

$$
\left|\sigma_{N}(g)^{\prime}\left(x_{0}\right)\right| \leqslant \quad \approx \quad \tilde{A} \log N
$$

